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Abstract 

This study provides novel analysis of the events in the WTI crude oil futures 

market on April 20, 2020. We detail how the arbitrage linkages between the 

NYMEX CL contract and the e-mini NYMEX QM contract broke down and re-

port new information about the unusual market conditions on that date. After 

establishing that most price discovery happens in the more liquid CL contract, 

we show how these two contracts decoupled in the May 2020 spot period. Next, 

using supervisory CFTC data, we document that the typical arbitragers did not 

participate in the WTI crude oil markets on April 20. This change in the com-

position of arbitragers had important implications for the unusual settlement 

prices in the CL contract. Third, we use generalizable non-parametric meth-

ods to rank the values observed in terms of price deviations, realized volatility 

and spreads to similar crude oils. We find the May 2020 spot month to have 

the largest values of these measures across all spot periods from 2011 to 2020. 

Finally, we show that natural gas futures markets did not experience a similar 

price decoupling, suggesting the lack of storage capacity at Cushing played an 

important role in the WTI crude negative price event. 
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1. Introduction 

On April 20, 2020, the penultimate day of the NYMEX West Texas Inter-

mediate (WTI) May contract (CME ticker symbol CL), a confluence of factors, 

including a shock to global demand caused by the COVID-19 pandemic, an 

5 oversupply of oil, and limited storage capacity at the delivery point of Cushing, 

OK, led the contract to settle at -$37.63 per barrel. This was the first time the 

NYMEX CL contract had settled or traded below $0 since its inception in 1983 

(CFTC 2021). This was an unprecendented event that was widely covered in 

the media.2 

10 As the price of the CL May contract went negative, the price of the NYMEX 

E-mini WTI contract (CME ticker symbol QM), which financially settles to 

the larger CL contract, decoupled and stopped transacting. This was a highly 

unusual event, as the law of one price predicts that opportunities for arbitrage 

would keep prices for these two contracts closely linked. An examination of 

15 all spot periods from 2011-2020 reveals the average difference in the per-barrel 

price between these two contracts is near zero, with small, short-run deviations 

observed. The one exception is seen on April 20, 2020(figure 1). 

2For example, see: https://www.nytimes.com/2020/04/21/upshot/negative-oil-price. 

html. 
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Figure 1: Difference in volume-weighted average prices (per barrel) of CL and QM contracts, 

aggregated at 10-minute level during the spot month, 2011-2020 

Our study makes several empirical contributions to the literature on arbi-

trage and price discovery in crude oil markets. First, we show that the price 

20 decoupling between the CL and QM contracts was likely caused by the lack of 

typical arbitrageurs in the WTI crude oil market.3 Without the arbitrageurs 

that typically provide liquidity and capture price inefficiencies between these 

markets, the conditions for large price movements were made possible. Second, 

we use novel non-parametric methods to rank the observed measures of price 

25 deviations, realized volatility, and price spreads with similar crude oils on April 

20, 2020 (May 2020 spot period), with all spot periods from 2011 to 2020. We 

find the May 2020 spot month to have the largest values observed across all 

these different assessments.4 Finally, we discuss potential policies that could 

3We note that participation in U.S. futures markets with limit orders is voluntary, with no 

designated market makers. In contrast, many equities exchanges, such as the New York Stock 

Exchange (NYSE), have Designated Market Markers (DMMs) that can augment limit orders 

to ensure fair and orderly markets. 
4This analysis concerns only the observations by the authors and does not represent a legal 

conclusion with respect to the applicability of any provision of the Commodity Exchange Act 
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help prevent a similar event from happening again in WTI crude oil futures 

30 markets. 

Much of our empirical analysis uses non-parametric methods due to the 

large outliers (i.e. ”fat tails”) in our data. All of our non-parametric methods 

are based on widely used statistical assessments of financial markets used in 

the finance literature. To understand where price discovery occurs we use a 

35 co-intergrated quantile regression model that allows the dependence structure 

between the prices in the CL and QM contracts to vary across the quantiles 

of these distributions. This method allows us to model the price relationship 

between these two contracts in a more flexible framework, and to show how they 

decoupled on April 20, 2020. Our non-parametric techniques are generalizable 

40 to any assessment that permits a rank ordering (monotonic relationship). We 

use non-parametric assessments of price deviations, realized volatility, and price 

spreads to accommodate the large outliers in our data. 

The rest of the article is organized as follows: The next section provides more 

background on the CL and QM contracts, followed by a review of the relevant 

45 literature. The data and non-parametric methods sections discuss the price data 

and explore why it does not fit parametric assumptions. The empirical section 

summarizes our measures of price discovery, and rankings for the price spreads, 

deviations, realized volatility, and distribution of arbitrageurs across all spot 

periods from 2011-2020. The final section summarizes our results and includes 

50 a policy discussion. 

2. Background 

The price discovery role of the CL contract is relied on by commercial and 

non-commercial entities for purposes of hedging and risk-management in the 

crude oil market. Daily volume traded is approximately 1.2 million contracts 

or any relevant regulations. The analysis is based upon the information available to the 

authors at the time the paper was written, and any different, changed, or omitted facts or 

circumstances would require additional analysis and might result in different conclusions. 
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55 per day (CFTC 2021). As a global benchmark, WTI serves as the key reference 

rate for physical and financial oil transactions around the world in the cash 

(spot) and futures market. One contract of CL is for 1,000 barrels of physically 

deliverable crude oil to Cushing, OK. 

The QM contract was created by NYMEX in 2002 as a response to market 

60 participant interest (Tse & Xiang, 2005). One contract of QM is financially 

settled for 500 barrels of WTI crude oil. On a typically day the QM contract has 

only 1% of the volume of the CL contract. The QM price is tethered to the final 

settlement price of CL on the day before the expiration of the physically-settled 

CL contract. Both contracts are free to float before expiration of QM. Market 

65 segmentation between participants in the financially-settled QM contract and 

the physically-settled CL contract is likely because delivery is not required to 

stay in the financial contract. The QM contract is mostly used by financial 

entities to gain price exposure to WTI for investment purposes, though some 

entities (commercials) use it for hedging and other purposes. 

70 The next section of the paper describes the relevant literature on crude oil 

markets and non-parametric methods in finance. We show that these methods 

give the researcher the flexibility to develop test statistics that do not depend 

on distributional assumptions. Our analysis then turns to the price discovery 

linkages between the CL and QM contracts. 

75 3. Related literature 

Theory predicts that futures contracts with similar underlying assets should 

have a long-run equilibrium price relationship. If prices for the same asset are 

different across markets, then a profit can be made by buying in one market 

and selling in the other. This arbitrage mechanism should keep prices coupled 

80 (law of one price) across different markets. Kawaller et al. (1987) show that 

S&P 500 futures and S&P 500 index prices are linked through arbitrage and 

that most price discovery occurs in the E-mini futures market. The growth of 

e-mini contracts in futures and equity markets has expanded possible markets 
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Tse & Xiang (2005) find that e-mini contracts contribute to 

85 price discovery in WTI crude oil and natural gas futures markets. The authors 

find that the smaller contracts improve market quality by reducing the bid-ask 

spread, and contribute to price discovery in the more liquid physically-settled 

contract. 

The relationship between storage, price spreads, and convergence in futures 

90 markets is an area of active research. In the crude oil markets, Buyuksahin 

et al. (2013) examine the link between inventory conditions and the futures 

term structure, as well as the WTI-Brent spread. They find storage constraints 

at Cushing play an important role in spread prices. A recent study by Eder-

ington et al. (2021) finds that storage capacity limits in U.S. crude oil markets 

95 can impede cash-and-carry arbitrage. Work by Irwin (2020) and Garcia et al. 

(2015) demonstrate that non-convergence in grain markets during the mid-2000s 

occurred when the market price of the physical grain storage exceeds the stor-

age rate on delivery instruments. We can see a parallel in the WTI crude 

oil market on April 20, 2020, where storage capacity was extremely limited, 

100 and futures prices settled below $0, while cash market transactions occurred at 

positive prices.5 The Commodity Futures Trading Commission’s Staff report 

also remarks that working storage at the Cushing facility was near capacity by 

March 2020 and that some industry participants were already preparing for the 

prospect of negative prices in late March and early April.6 

105 There is a substantial body of research on forecasting crude oil prices. Miao 

et al. (2017) improve on existing methods of forecasting crude oil prices by in-

cluding explanatory variables about commodity and financial markets, supply 

and demand, speculative activity, and geopolitical factors into a LASSO regres-

sion model framework. Other factors important to predict oil prices include 

5Media reports confirm that there was strong interest in leasing oil 

tanks at Cushing prior to the May 2020 spot period, but that all tanks 

had been leased by mid-March: https://pgjonline.com/news/2020/04-april/ 

remaining-oil-storage-in-cushing-ok-is-already-booked-traders. 
6Report available at: https://www.cftc.gov/PressRoom/PressReleases/8315-20. 
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110 price jumps (Buncic & Gisler, 2017), economic news (Elder et al., 2013), and 

crude oil inventory announcements (Miao et al., 2018). Recent studies have ex-

amined more sophisticated methods for forecasting crude oil realized volatility 

and prices, such as standard mixed data sampling (MIDAS) (Chen et al., 2022), 

and combining variation mode decomposition with random sparse integrated 

115 Bayesian learning (Li et al., 2021). 

Crude oil markets with similar quality crude oil are often co-integrated, 

meaning they have a long-run relationship (Galay, 2019). In addition, crude 

oil markets can be co-integrated across different oil producing regions (Weiner, 

1991),and co-integrated with their respective spot markets (Schwarz & Szak-

120 mary 1994; Silvapulle & Moosa 1999). Some studies argue that the world oil 

market is “one great pool” (Adelman, 1984) and prices co-move together, while 

others have found evidence of regionalization in crude oil markets (Gulen, 1997). 

Vector error correction models (VECM)(Johansen, 1988, 1991)) are com-

monly used to estimate price dynamics in co-integrated markets, such as between 

125 WTI and Brent(Liu et al., 2015). However, linear models, such as a VECM, 

have been shown to have low power when nonlinearities are present in the data 

(Hiemstra & Jones, 1994). In such circumstances, non-parametric quantile re-

gression methods can provide a more flexible modeling approach (Koenker & 

Hallock, 2001). A recent study by Yang et al. (2021) uses causality-in-quantiles 

130 methods to estimate the effects of oil shocks on commodities across the quantiles 

of the distribution. Price discovery patterns are widely estimated using methods 

such as Hasbrouck (1995)’s Information Shares and Gonzalo & Granger (1995)’s 

Permanent-Transitory Common Factor Weights. 

A few studies have examined how the financialization of commodity markets 

135 (Cheng & Xiong, 2014) could impact the functioning of the WTI oil market 

and other commodity markets. Fernandez-Perez et al. (2020) use a Granger-

causality framework and find no evidence that the largest WTI crude oil Elec-

tronically Traded Fund (ETF), the United States Oil Fund (USO), had a price 

impact on the WTI market on April 20th. In fact, most ETFs had rolled their 

140 positions into the active contract (June) well before the spot month. 
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A recent study has explored the direct impacts of negative WTI crude prices 

on energy producers. Gilje et al. (2020) show how low prices in WTI on April 

20th caused oil producing firms to stop production (i.e. shut-in wells) in areas 

of the United States far from Cushing, but were affected via WTI purchase 

145 contracts. Many firms have crude oil purchase contracts that are indexed to 

WTI futures and the low prices dramatically affected the profitability of wells, 

particularly in North Dakotas where production could be shut off more easily 

due to the use of fracking technology7 . 

In contrast to previous studies, our paper examines how the price events in 

150 the CL contract on April 20, 2020 interacted with cash-settled contracts on near 

substitutes, such as the QM and BZ (CME Brent crude oil) contracts. Further, 

we provide new evidence on the distribution of arbitrageurs and show how it 

was significantly different from any spot period in the CL contract across the 

time period 2011-2020. 

155 4. Data 

Our data set comes from the Transaction Capture Reporting (TCR) system 

of the U.S. Commodity Futures Trading Commission. We use TCR data to 

capture all trades in the CL and QM contracts in the spot month, or the last 

three days before expiration, between January 3, 2011 and December 31, 2020. 

160 January 2011 is the first month where reliable WTI crude data from TCR is 

available. The TCR database includes fields about the counterparties, which 

side of the trade is represented, and provides identification about the execut-

ing firm and the trading account. In addition, we use TCR data on NYMEX 

7We note that not all spot markets reflected the abnormal pricing in the futures market on 

April 20. Platts did not report negative spot prices for WTI crude. We believe they used a 

combination of spreads to Brent and WTI Midland prices to create the WTI benchmark when 

futures prices went negative. This override on their price methodology prevented a reporting 

of negative spot prices. For more details on Platts pricing methodology, go to:https: 

//www.spglobal.com/platts/plattscontent/_assets/_files/en/our-methodology/ 

methodology-specifications/platts-assessments-methodology-guide.pdf 
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financially-settled Brent Crude (CME ticker BZ) for the same time period as 

165 WTI CL, in order to compare the price differentials between the two crude oils. 

We also examine data from TCR on Trade-at-Settlement (TAS) volume in 

the WTI crude oil market (CL). TAS trades are an order type that allows 

a participant to execute a trade at a differential or defined number of tick 

increments, above or below that day’s settlement price, at any time during the 

170 trading session. We only use data on TAS volume for the purposes of analysis 

in this paper, not TAS trades. In this way, we consider only price-forming 

transactions. Our final TCR data includes Natural Gas trade prices in the 

spot month for both the financially settled (NYMEX ticker HH) and physically 

settled (ICE ticker H) contracts from January 1, 2015 through December 31, 

175 2020. January 2015 was the earliest that reliable TCR data on natural gas was 

available. 

4.1. Summary Statistics 

In order to make the data usable for event-time analysis, we create a volume-

weighted average price (VWAP) from the TCR data on the CL and QM con-

180 tracts. Our data are measured at the 10-minute level in every spot month from 

2011-2020, giving a total of 120 spot months. However, we do not observe a 

CL and QM trade in every 10-minute window for each spot month. Our final 

dataset contains 11,923 observations. 

To test whether our price series have a unit root, we perform a Augmented 

185 Dickey-Fuller Generalized Least Squares (ADF-GLS)(Elliott, 1999) test. Opti-

mal lags for the test are chosen using the Akaike Information Criteria (AIC). 

The ADF-GLS test finds that both the CL and QM price series are not sta-

tionary in levels. After taking first-differences of both price series, we reject 

the null hypothesis that CL and QM prices have a unit root process at the 

190 1% level of significance. Summary statistics for CL and QM prices and their 

first-differences are shown in table 1. 

9 



U) 

": .,o 
'E' 
_:, 
0 
Oo 
u_u> 

tfO 
<ii 
E 
ls 
z.,., 

N 
0 

0 
0 
0 

0.00 0.25 0.50 
Empirical P[i] = i/(N+1) 

0.75 1.00 

195 

Table 1: Summary statistics for volume-weighted average prices (VWAP) in CL and QM 

contracts and first differences (Δ), 2011-2020. 

Obs Mean SD Skewness Kurtosis ADF-GLS 

CL 11,923 71.527 109.844 -0.162 1.786 -0.843 

QM 11,923 71.529 109.919 -0.159 1.776 -0.848 

Δ CL 11,922 -0.0003 0.030 -10.967 2569.260 -76.160*** 

Δ QM 11,922 -0.002 0.146 -93.481 9439.384 -77.176*** 

Note: *** ,** and * indicate the ADF-GLS test unit root test is rejected at the 1% 

level. 

We note that even after taking a first-differences transformation both the 

CL and QM prices show significant deviations from normality. For example, the 

Δ CL price data have significant probabilities in the tails of the distribution, 

likely due to the large price movements on April 20. These “fat tails” can be 

seen in the QQ-norm plot in figure 2. 

Figure 2: Normal quantile plot of first-differences in CL prices 

A similar finding is seen with the Δ QM price data. Additional univariate 

tests for normality reject that either data series does not have skewness or kur-

tosis at the 1% significance level. We also see that joint plots of first differences 

in CL and QM prices are not spherical (appendix figure 4) and do not come from 
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a clear parametric family. These findings motivate our use of non-parametric 

methods in the empirical methods section. 

5. Non-parametric methods 

Our non-parametric estimators of price deviations, price spreads, realized 

205 volatility, and price discovery are based on well-known parametric estimators 

used to measure arbitrage conditions. We use non-parametric methods because 

our price data contain “fat tails” but these methods are generally applicable to 

any financial data that violate the classical distributional assumptions used for 

statistical inference (Eom et al. 2019, 2021). In such circumstances, the use of 

210 non-parametric or distribution-free methods are preferred for statistical analysis 

because they are more robust to large outliers (Maritz 1995; Kane 2004). 

Statistical inference relies on the empirical cumulative probability distribu-

tion of the rank-ordered statistics. Working with the empirical distribution, we 

give each observation the probability of 1/N, where N is the total number of 

215 observations. If two observations are tied, then we give the probability 2/N, 

etc. Each observation of the test statistic is selected from a uniform draw with 

replacement. This is known as bootstrap sampling(Efron, 1982) and can be 

used with any assessment that permits ranking thought a monotonic relation-

ship. P-values for our test statistics are computed by the relative frequency of 

220 observations bigger than or equal to the observed value. 

6. Empirical Results 

The first part of our analysis tests whether CL and QM prices are co-

integrated. After establishing co-integration, we examine which contract con-

tributes more to price discovery using a co-integrated quantile regression model. 

225 Next, we examine the extent of price decoupling in the May 2020 spot month 

by using non parametric order statistics that rank the price deviations, realized 

volatility, and price spread with Brent crude oil, for each spot period from 2011 

to 2020. We then examine the distribution of arbitrageurs and test whether it 
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was significantly different on April 20, 2020. Finally, we estimate a difference-

230 in-differences model that compares the spread between the cash-settled and 

physically-settled contracts in the natural gas markets with WTI crude oil mar-

kets in the May 2020 spot period. All empirical analysis shown was estimated 

using STATA or SAS. 

6.1. Price Discovery in WTI crude oil 

235 The quantile regression method allows us to model the relationship between 

the CL and QM prices in a more flexible manner. It allows for a dependence 

structure that is not linear and does not depend on the errors being normally 

distributed (i.e. data with “fat tails”). Baur (2013) notes that the quantile-

based approach allows for asymmetric dependence structures, where there may 

240 be more dependence in the right or left tail of the distribution. Koenker & 

Hallock (2001) observe that quantile regression methods provide an alternative 

approach for robust inference because they allow the researcher to explore a 

range of conditional quantiles, allowing for forms of conditional heterogeneity. 

Quantile regression uses linear programming methods (e.g. simplex method) to 

245 solve the minimization problem instead of least squares in the case of conditional 

mean. 

A closer analysis of our price data series reveals there is a structural break 

in late 2014 and early 2015. There is a significant drop in WTI crude oil prices 

during this period caused by the U.S. shale oil boom and increased the supply 

250 from the Bakken fields in North Dakota. To keep the econometric model par-

simonious, we opt to start our data series after January 2015. The remaining 

five years of crude oil data gives us 6,040 observations for our analysis. 

We test for the maximum order of integration by using the (Johansen, 1991) 

test. We find that CL and QM prices are indeed co-integrated with one common 

255 factor at the 5% level of significance. Next, we test for the number of lags using 

the Akaike Information Criteria (AIC). The AIC selects 13 lags as optimal for a 

vector-autoregressive model. This means our co-integrated quantile regression 

model will have 12 lags. 
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Following Bianchi et al. (2020) and Troster et al. (2018) we extend a standard 

quantile auto-regressive model by taking first differences and including an error 

correction term. We also interact a dummy variable with the error-correction 

term, where the dummy variable is equal to one in May 2020 spot period and 0 

otherwise. This interaction variable will allow us to test whether the long-run 

relationship between the CL and QM contracts decoupled in the May 2020 spot 

period. We then specify a bivariate error-correction model for each conditional 

quantile as follows: 

QΔCLt (τ |X) = αQM,τ + βCL,1,τ ECTt−1 + βCL,2,τ DMay20,tECTt−1 

12 12X X 
+ γ1,i,τ ΔCLt−i + γ2,i,τ ΔQMt−i + �CL,t, 

i=1 i=1 
(1) 

QΔQMt (τ |X) = αQM,τ + βQM,1,τ ECTt−1 + βQM,2,τ DMay20,tECTt−1 

12 12X X 
+ γ3,i,τ ΔCLt−i + γ4,i,τ ΔQMt−i + �QM,t, 

i=1 i=1 

where QΔ. (τ |X) denotes the conditional quantile of the first-differenced CL 

260 or QM price series, 0 < τ < 1 denotes the quantile, and ECTt−1 is the lagged 

error correction term (ECTt = CLt − θ0 − QMt). The error correction 

term proxies for the speed of adjustment caused by a price disequilibrium with 

the other contract. The DMay20,t term represents a dummy variable, equal to 

one in the May 2020 spot period, and zero otherwise. The coefficients on the 

265 error correction term, βCL,1 and βQM,1, capture the effect of the equilibrium 

adjustments in all periods excluding the May 2020 spot period. The coefficients, 

βCL,2 and βQM,2, capture any additional equilibrium adjustment effect during 

the May 2020 spot period. 

In order to compute a proxy for price discovery, we use a version of the 

Permanent-Transitory Common Factor Weights (CFW) that relies on the abso-

lute relative magnitude of the error correction terms to determine each contract’s 

contribution to price discovery (Cabrera et al., 2009). The CFW for the CL and 

QM contracts evaluated at quantile τ are: 

|αQM,τ | |αCL,τ |
CFWCL,τ = , CFWQM,τ = (2)

|αQM,τ | − |αCL,τ | |αCL,τ | − |αQM,τ | 
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Estimated parameters for the error correction terms and common factor 

270 weights are shown at each conditional quantile (i.e. q10, q20, . . ., q90) in table 2. 

We find that the error correction term to be significant at the 5% level in both 

CL and QM contracts across all spot periods in 2015-2020, excluding May 2020. 

This is seen across quantiles 10 through 80 (i.e. q10 - q80). This suggests that 

both contracts contribute information to the equilibrium price across this time 

275 period. The much smaller coefficients for βCL reflect CL prices incorporate 

information earlier and thus, require smaller equilibrium adjustments to QM 

prices. This small adjustment factor is seen across all quantiles of the ΔCLt 

distribution. In contrast, the estimates of βQM are relatively larger, reflecting 

that it makes larger adjustments to changes in CL prices. 

Table 2: Estimates of error correction term coefficients and Common Factor Weights (CFW) 

by quantile for all spot periods in 2015-2020, excluding May 2020 (top), and the May 2020 

spot period (bottom) 

q10 q20 q30 q40 q50 q60 q70 q80 q90 

βCL,1 -0.14** -0.11*** -0.11*** -0.12*** -0.12*** 0.11** -0.12* -0.16* -0.19 

CFWCL 82% 85% 84% 81% 80% 80% 77% 70% 62% 

βQM,1 0.62*** 0.64*** 0.56*** 0.50*** 0.49*** 0.43*** 0.42*** 0.37** 0.31 

CFWQM 18% 15% 16% 19% 20% 20% 23% 30% 38% 

βCL,1 + βCL,2 0.12 0.13 0.09 0.10 0.09 0.11 0.13 0.15 0.12 

CFWCL 88% 86% 90% 88% 78% 70% 66% 58% 54% 

βQM,1 + βQM,2 0.88*** 0.81** 0.80** 0.72* 0.32 0.26 0.25 0.21 0.14 

CFWQM 12% 14% 10% 12% 22% 30% 34% 42% 46% 

Note: *** ,**, and * indicate the parameter estimate is significant at the 1, 5, and 10 percent level, respectively. Quan-

tile regression standard errors are based on 100 bootstrap resamplings. 

280 We find that most price discovery happens in the more liquid CL contract 

over the 2015 - 2020 period, excluding May 2020. Evaluated at the median 

(q50), the CL contract contributes 80% to price discovery in WTI crude oil, 

while the QM contract contributes 20%. This is consistent with the larger, 

more liquid, CL contract taking in information more rapidly than the smaller 

285 QM contract. We also find that price discovery contribution of the CL contract 
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varies between 62-85% across the ΔCLt distribution, with a lower share of price 

discovery at the higher quantiles. 

Next, we examine the coefficients on the error correction term in the May 

82020 spot period and test whether they are statistically significant from zero. 

290 The bottom portion of table 2 displays results of a test of the sum of βCL,1 and 

βCL,2, representing the effect of the error correction term in the May 2020 spot 

period for CL contract. The test results reveal they are not statistically different 

from zero at any quantile of the distribution. This provides evidence that the 

CL contract stopped incorporating information from the QM contract during 

295 the May 2020 spot period. This is consistent with the CL contract decoupling 

from the smaller financially settled QM contract. We also find no evidence of a 

significant error correction effect in the QM contract at quantiles 50 through 90. 

However, we do see evidence that QM prices were still responding to changes 

in CL prices at quantiles 10 through 40, where more negative price changes 

300 occurred. This is consistent with the observation that QM prices followed CL 

prices as they plunged towards $0 per barrel on April 20, 2020. 

When we examine price discovery in the May 2020 spot period, we see still 

observe more price discovery occurring in the CL contract. However, compared 

with the 2015 - 2020 period, a larger share of price discovery happens in the 

305 CL contract at the lower quantiles (i.e. q10 - q40), where CL price changes are 

more negative. We note that because many of the error correction terms are not 

significant, the price discovery estimates contain a lot of variability. The lack of 

arbitrage happening in the May 2020 spot period between these two contracts 

likely contributes to the noise in measures of price discovery. 

310 Overall, the co-integrated quantile regression model provides clear evidence 

that most price discovery happens in the CL contract and that these two con-

tracts decoupled in the May 2020 spot month. The more flexible model also 

shows how price discovery and equilibrium adjustments between these two con-

tracts vary over their respective price distributions. Our next set of analyses 

8We have 197 observations in the May 2020 spot period. 
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315 show the extent of the price decoupling using non parametric methods. 

6.2. Price deviations between CL and QM contracts 

We measure the price deviations between the CL and QM contracts across all 

spot periods from 2011-2020 and show the extent of price decoupling in the May 

2020 spot month. Our price deviation statistic is similar to a paired Wilcoxon 

signed-rank test or a t-test for a difference in means for matched trades in CL 

and QM. One difference is that a t-test assumes normality while our method 

does not. Our statistic is as follows: Pn CLP −+CLP + 

Qi ∗ |QMPi − ( i i )|i=1 2P rice deviation = (3)
T otalV olume 

where n is the number of trades in the spot period in QM, QMPi is the price 

of trade i in QM, Qi is the quantity of trade i in QM, CLP − is the most recent i 

price of a trade in CL before trade i, CLP + is the most recent price of a tradei Pn 
320 in CL after trade i, and Total Volume = i=1 Qi. 

We have 120 spot periods between 2011-2020. The largest outlier is the May 

2020 contract, with a price deviation assessment of 1.28. The largest outlier 

has a p-value of 1/120 (p < 0.01). The next largest assessment is 0.31 from the 

February contract of 2016. This supports the claim that the financially-settled 

325 contract decoupled from the physically-settled contract in the spot period for 

crude oil. A complete table of price deviation rankings by spot month are 

available in table 3 in the appendix. 

6.3. Distribution of arbitrageurs 

To analyze the frequency of arbitrage trades in WTI crude during the spot 

330 month, we concatenate the executing firms with the trading accounts to form 

trader-ids. We compute benchmark prices in QM by taking the average of the 

trade immediately before and after in CL. We estimate the amount of arbitrage 

done by a trader-id. If the price in QM is above the benchmark then we examine 

the trader-id that sold QM and consider trade quantity*(trade price – benchmark 

335 price) as the amount of arbitrage for that trade. Similarly, if the price of QM is 
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below the benchmark, then we add an arbitrage quantity to the trader-id that 

bought QM as trade quantity*(benchmark price – trade price). We then sum all 

the arbitrage for each trader-id. Pn (Observedi−Expectedi)
2 

We assume has a Chi-Squared distribution withi=1 Expectedi 

340 degrees of freedom n − 1, where n is the number of trader-ids. We form the 

observed by computing the amount of arbitrage during the spot period for QM 

for each trader id. We form the expected by computing the amount of arbitrage 

over all 120 spot periods and adjusting for the amount of arbitrage in May 2020 

by dividing by the sum of the total amount of arbitrage overall and multiplying 

345 by the amount of arbitrage in May 2020. This gives us a well-defined expecta-

tion. We use this approach because there may be trader-ids for the May 2020 

contract that did not trade in any other spot period. This would cause issues 

with the test statistic, as the numerator would be divided by zero in those cases. 

Our Chi-squared statistic is 1,798 with 1,200 degrees of freedom. The p-

350 value is less than 0.0001. This result shows that traders who were performing 

the arbitrage between QM and CL were different for the May 2020 contract than 

in other contract months. Indeed, we find that many of the typical arbitragers 

did not do any trades that we computed as arbitraging on April 20, 2020. This 

finding has important implications for the smooth functioning of the crude oil 

355 market. As we show later, the unusually large values of realized volatility and 

price spreads observed on April 20 can likely be tied to the lack of typical 

arbitrageurs in the market. For a complete listing the chi-square statistics for 

arbitrageur distribution rankings by spot month, see appendix table 4. 

As a robustness check to our test statistic, we compute a p-value using the 

360 assumption that any ordering of the contract month is equally likely under the 

null hypothesis because the different contract month test statistics may be serial 

correlated due to arbitragers moving into and out of market making activities. 

This lack of independence makes the underlying assumption of the Chi-squared 

distribution dubious. We note that the two p-values from the different methods 

365 are not identical as they are derived from different assumptions. Here the May 

2020 contract is the largest outlier with a p-value of 1/120. This provides collab-
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orating evidence that the arbitragers were different for the May 2020 contract. 

As a further robustness check, we delete the May 2020 contract and reran the 

chi-square tests with 119 observations. We still have outliers that are significant 

370 at 0.0001 but they are substantially smaller (see appendix table 5). 

6.4. Spread deviations between Brent and WTI crude oil futures 

The Brent crude oil (BZ) futures contract is a close substitute to WTI crude 

contract (CL) because it is similar in grade, but is a waterborne contract that is 

cash settled. We analyze the spread between these two contracts to understand 

375 how specific delivery issues at Cushing, OK impacted the CL contracts. The 

choice of the test statistic between Brent and WTI is analogous to a standard 

deviation calculation around volume-weighted average (VWA), because we want 

to average over contracts that are traded. Examples of standard deviations being 

used to measure price volatility in WTI and Brent crude oil include Milonas & 

380 Henker (2001). The VWA Spread Proxy functions like a mean in a standard 

deviation calculation where the dispersion between the price of the two contracts 

is assessed. We do not use an absolute deviation because the spread between 

Brent and WTI should vary over time due to economic conditions and not be 

fixed. Consequently, each spot period has its own VWA spread. 

We calculate the spread deviation assessment (SDA) as: Pn 
Qi ∗ |Spread P roxyi − V W A Spread|i=1SDA = (4)

T otal V olume 

where 
B− + B+ 

i iSpread P roxyi = Pi − (5)
2 

and 
nX Spread P roxyi

V W A Spread = Qi ∗ (6)
T otalV olume 

i=1 

385 where n is the number of trades in the spot period, Pi is the price of trade i in 

WTI crude, Qi is the quantity of trade i, B− is the most recent trade in Brent i Pn
after trade i, and T otal V olume = i=1 Qi. 

When we analyze the 120 spot periods between 2011-2020, we find the largest 

outlier (5.35) to be the May 2020 futures contract in late April of 2020. The 
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390 largest outlier has a p-value of 1/120 (p < 0.01). The next largest deviation 

is 1.52 in the March contract of 2011, likely caused by political turmoil in the 

Middle East at the time. All the other deviations are less than one. This 

gives support for the spread deviation being induced by the WTI contract with 

physical delivery at Cushing, as the price Brent contract was relatively stable. 

395 While storage capacity at Cushing is substantial, approximately 75.8 million 

barrels according to EIA, the hub itself is landlocked. This contrasts with 

Brent crude oil, which is a waterborne contract settled around the North Sea. 

A complete table of spread deviation rankings by spot month can be found in 

table 6 in the appendix. 

400 6.5. Realized Volatility in the spot month for CL 

We measure the realized volatility in each spot period from 2011-2020 and 

rank them. We use volume-weighted realized volatility as an assessment of how 

much the futures prices are moving around from trade to trade. This is similar 

to testing whether the variance in prices in each spot month are equal using a 

405 parametric test, such as an F or Chi-square distribution. 

We calculate realized volatility as follows: Pn 
Qi ∗ (Pi − Pi−1)

2 
i=aV olume-W eighted V olatilty = (7)
T otal V olume 

where n is the number of trades in the spot period in CL, Pi is the price of 

trade i in CL, Qi is the quantity of matched trade i in CL, the constant a is 1 

for the marking period and 2 for the non-marking period, and T otal V olume = Pn 
i=1 Qi. 

410 There are 120 spot periods between 2011-2020. The largest outlier has a 

p-value of 1/120 (p < 0.01). In the two-minute marking period for QM and 

for trade at settlement transactions in CL on the penultimate day, we observe a 

volume-weighted volatility of 317.19 in the May 2020 contract. The next highest 

being 0.682 for the April 2020 contract. There were only 135 contracts matched 

415 in CL in the marking period, the lowest in our sample. We conclude that the 

the lack of arbitrageurs in the May 2020 spot period resulted in significantly 
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higher realized volatility. A complete table of weighted volatility rankings by 

spot month can be found in table 7 in the appendix. 

6.6. Trade at settlement analysis 

420 In this section we analyze some of the unusual behavior in the settlement of 

the CL contract on the penultimate day for the May 2020 contract. A trade at 

settlement transactions results from a limit order that have been matched in the 

TAS differential order book which has a price derived from settlement prices. 

The differentials in the order book range from $-0.10 to $0.10 in outrights and 

425 $-0.20 to $0.20 in spreads in CL. A trade at settlement transactions results from 

a limit order that have been matched in the TAS differential order book which 

has a price derived from settlement prices which occurs at the end of the trading 

day. 

To compute the settlement price, the CME uses the spread between the ac-

430 tive contract and the spot contract and the settlement price in active contract in 

CL. The active contract is the next calendar month from the spot month. The 

exchange computes the volume-weighted average price during [14:28,14:30] for 

regular outright and implied outright transactions in the active contract. The 

exchange computes the spread between the spot month contract using the reg-

435 ular spread and implied spread transactions using the volume-weighted average 

price during [14:28,14:30] with the spot month when available. We observed it 

in each spot month of our sample for CL. 

There was some unusual behavior in the settlement of the CL contract on 

the penultimate day for the May 2020 contract. There was the largest number 

440 of futures contracts settling to the settlement price on the penultimate day since 

any contract month from 2011-2020. There were over 103,734 total outrights 

(both buys and sells) trade-at-settlement in CL on April 20. There were 50,418 

spread trade-at-settlement (both buys and sells), and 5,141 QM contracts (QM 

is a half notional contract) that went to expiration and cash settled. This is 

445 the largest amount of futures transactions settling on the penultimate day of 

the contract, ranking 120 out of 120 with the next largest being November 15, 
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2012 (December 2012 contract) with 92,186 outright TAS, 7,948 spread TAS, 

and 9,299 QM contracts that went to expiration. There are also derivative 

contracts such as balance of the month futures contracts, swaps and forwards 

450 that referenced the closing price of CL, too. 

The CL contract also saw the lowest trading volume both in the spread 

between the spot and the active (285 contracts), and the spot (135 contracts). 

The active contract did not see a record low volume (3246 contracts). Further, 

the spread contract between the spot and active contract was not that volatile 

455 in the May 2020 contract month. However, the spot and the active contract 

month were the most volatile contract months.9 This means that liquidity 

rarely crossed between the spot and active contract even though the realized 

volatility was the highest ever observed in both contracts.10 Only 135 contracts 

were matched between the active and spot month by spreads. This means that 

460 the price of limit orders between spot and active contract moved down in near 

lock step, otherwise more limited orders would have matched between the active 

and spot contract. 

Finally, the largest amount of linked trading between TAS and the outrights 

was observed, summed by trader-ids. The May 2020 has a linked trade open 

interest that is 25% more than next largest outlier and 2.7 times larger than the 

median. Linked-trade open interest is calculated as follows: 

n mX X 
Linked T rades = MIN [ Q(Outrightsell), TASbuy] 

k=0 k=0 
(8)

l pX X 
+MIN [ Q(Outrightbuy), Q(T ASsell)] 

k=0 k=0 

9The first six months of 2011 lack descriptors for both TAS and specific calendar spreads. 

Consequently, the relative frequencies are out of 114 months with spread and TAS transaction 

test statistics. The volatility of the spread between the spot and active month ranked 89 out 

of 114 which is not statistically significant at the 5% level. 
10The CME has limit order functionality that allows an outright in the spot month and a 

spread between the active and spot month to match against an outright in the active month 

(or visa versa). 
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This demonstrates that traders executed TAS transactions where the price 

was to be determined by settlement at the end of the day and traded in the 

465 opposite direction in the outright contract. CFTC Commissioner Berkovitz has 

criticized not bounding the amount of linked trades. He asserts that since the 

price of the TAS trade isn’t determined, it gives parties with large TAS positions 

an incentive to mark the settlement period to benefit their TAS transactions.11 

6.7. Comparison of WTI and Natural Gas Markets in May 2020 spot month 

470 Our last empirical analysis examines whether the storage problems observed 

in WTI crude oil were isolated or whether another energy market, such as 

natural gas, experienced a similar capacity problem. We estimate a difference-in-

differences model to test whether the decoupling between the cash and physically 

settled contracts in WTI crude oil was observed in the natural gas futures prices 

475 as well. Our null hypothesis is that this event was isolated to WTI crude oil 

markets connected to the pipeline at Cushing. 

To test the suitability of a difference-in-differences model, we first examine 

the trends in differences between the cash settled and physically settled prices 

for both natural gas and WTI crude oil. Our parallel trend analysis is shown in 

480 appendix figure 5. The two sets of lines have a similar trend around zero until 

our negative price event in April 2020. While there is more noise in the WTI 

crude oil price series, the overall trend is consistent with the natural gas series. 

We note that the contracts for these two commodities expire at different 

times in the month, so we compare the prices in their respective spot months. 

485 As such our analysis is in event-time, rather than chronological time.12 The 

time frame for this analysis runs from December 2015 to December 2020. We 

have five years of data with 12 spot months per year, giving us 60 spot months. 

There are 72 hours in each spot month, giving us a total possible number of 

11https://www.cftc.gov/PressRoom/SpeechesTestimony/berkovitzstatement031521 
12NYMEX CL trading terminates 3 business days prior to the 25th calendar day of the 

month prior to the contract month. NYMEX NG trading terminates on the 3rd last business 

day of the month prior to the contract month. 
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observations of 4,320. However, because hourly trades are not always observed 

490 in both contracts, our dataset has 2,890 observations. 

We specify a difference-in-differences model with spot month fixed effects as 

follows: 
MX−1 

yit = αmDm,it + β0Dmay20,it + β1DW T I,it + β2DW T I,itDmay20,it + �it 
m=1 

(9) 

where yit is the difference in the hourly VWAP between the cash settled and 

physically settled prices in natural gas or WTI crude oil contracts, where the 

commodity type (i.e. natural gas or WTI crude oil) is denoted by i, the hour 

is denoted by t, and spot month denoted by m. Dm,it is a dummy variable 

th 
495 for the m spot month, leaving out May 2020. Dmay20,it is a dummy variable, 

equal to one in the May 2020 spot month, and zero otherwise. Finally, the 

interaction of the dummy variables DW T I,it and Dmay20,it is equal to one when 

the commodity is WTI crude oil and the spot month is May 2020, and zero 

otherwise. The coefficient on this interaction term, β2 is the treatment effect 

500 we wish to measure. 

We scrutinize the parameter β2, which assesses the the average difference-in-

differences between the physically settled and cash settled contracts of Natural 

Gas and WTI crude oil in the May 2020 spot period. The estimate for β2 is 

-0.218 and has a p-value of less than 0.001. This finding indicates that there 

505 was a significant difference in the average price between the cash and physically-

settled contracts in WTI crude oil, compared with Natural gas, during the May 

2020 spot month. As a robustness check, we conduct a series of falsification 

tests using the four spot months before and after May 2020. These tests do not 

find a significant difference in prices between the pair of contracts in WTI crude 

510 oil and Natural Gas during any other spot periods. 

The difference-in-differences model results confirm storage problems with 

WTI crude likely played a role in negative price event. We note that natural 

gas has seasonal storage variability with lower capacity in fall prior to the winter 

months with higher capacity in the Spring because natural gas is drawn down 
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515 during the cold winter months and consumed. Consequently, there was plentiful 

natural gas storage available to a long position holder taking delivery at Henry 

Hub with the May 2020 contact in late April. 

7. Summary and Discussion 

The negative price settlement in the WTI crude oil futures contract on April 

520 20, 2020 was a historic and unprecedented event. Our study leverages CFTC 

supervisory data to show that the typical arbitrageurs were not present in the 

market on that date, leading to a substantial loss of liquidity. Our study uses 

generalizable non-parametric methods to assess and rank the price movements, 

volatility, and spreads with similar crude oils observed on April 20 with the 

525 past 10 years of spot periods. We demonstrate that the NYMEX CL and QM 

contracts, usually linked by arbitrage, decoupled on that date. Consistent with 

previous studies, we find that storage constraints at Cushing affected the WTI-

Brent spread, finding the spread was significantly larger than usual on April 

20. We confirm the lack of storage at Cushing as a contributing factor in the 

530 negative price event by comparing the cash-physically settled price spread in 

WTI crude oil futures with natural gas futures. 

We identify two policy areas that might prevent a similar market event in 

WTI crude futures, specifically, 1) increasing market liquidity with designated 

market makers (DMMs), and, 2) changing the contract specifications to include 

535 variable storage rates or additional delivery locations. Our suggestions seek to 

improve liquidity and facilitate better cash and futures price convergence at 

expiration. Better price convergence accommodates the hedging of price risk by 

commercial entities in the physical marketing channel.13 

Academic research has shown that DMMs can improve market liquidity and 

13We note that futures exchanges institute their policies and procedures absent objection 

from the CFTC when they certify that they have satisfied core principles stipulated under 

the Commodity Exchange Act. As such, much of the discretion lies with the futures exchange 

listing a contract for trading. 
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540 decrease transaction costs (Tse & Zabotina 2004; Clark-Joseph et al. 2017). 

Many equities and options exchanges already have DMMs that stand ready to 

buy and sell stocks listed on the exchange, including the London Stock Ex-

change, Euronext, and the New York Stock Exchange.14 The exchange could 

also create incentives for market makers to provide liquidity. This could be 

545 accomplished through rebates or discounts for participants who have matched 

passive limit orders during the marking period in the active contract or with 

the spread between the active and spot contract. We note that making mar-

kets during the spot period for a physical commodity may require contingency 

planning for making or taking delivery. 

550 Storage constraints affect the price of deliverable futures contracts. Adding 

a variable or market-based storage rate to the WTI contract might help with 

cash and futures price convergence issues. Studies by (Irwin, 2020) and (Gar-

cia et al., 2015) found that fixed storage rates used in grain contracts in the 

mid-2000s contributed to convergence issues between cash and futures prices, 

555 particularly in wheat markets. These convergence issues were addressed when 

the Chicago Mercantile Exchange (CME) introduced variable storage rates on 

the wheat contracts. Variable storage rates are a market-based determinant 

of the maximum allowable storage rates for outstanding wheat shipping cer-

tificate. It triggers higher maximum allowable storage rates that allow wide 

560 spreads when spreads are near full carry, while also allowing lower maximum 

storage rates when spreads are narrow or inverted. We note that delivery of 

WTI crude is slightly different than grain contracts because it happens one 

week to ten days hence, not immediately in the spot period, due to the need to 

schedule pipelines, etc. 

565 Another potential enhancement to confront storage issues with WTI is to 

add more delivery options. The WTI-Houston contract was introduced by CME 

in 2018. It has same chemical specification for crude oil as WTI-Cushing but 

delivery is at the port of Houston. Houston has the potential to serve as an 

14We note that participation in futures markets is voluntary for traders. 
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alternative delivery location (with commensurate differentials) that could allow 

570 longs additional ability to take delivery of WTI if they could elect this location 

under the contract after delivery in Cushing because crude oil may be loaded 

into tankers or placed into nearby storage facilities. 
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Figure 3: Time series of volume-weighted average prices in CL (left graph) and QM (right 

graph) contracts, measured at the 10-minute level during the spot month, 2011-2020 

Figure 4: Joint plot of first-differences in prices for CL and QM contracts, 2011-2020 spot 

months 
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202101 0.011386861 1 201612 0.035565 31 201405 0.059372 61 201204 0.093838 91 

202011 0.0124 2 201401 0.03557 32 201608 0.059476 62 202006 0.09434 92 

202012 0.014051095 3 201806 0.036585 33 201709 0.059507 63 201809 0.096742 93 

201905 0.018856502 4 201407 0.037305 34 201812 0.060399 64 201909 0.098344 94 

202009 0.019918033 202003 0.037615 201708 0.060646 201511 0.10528 

201303 0.02035061 6 201302 0.038104 36 201601 0.062014 66 201501 0.109456 96 

201304 0.023 7 201712 0.039301 37 201907 0.062365 67 201911 0.111 97 

202008 0.024104478 8 201208 0.040117 38 201903 0.062368 68 201505 0.11455 98 

201711 0.02474359 9 201908 0.040376 39 201102 0.063054 69 201502 0.114648 99 

201801 0.025033557 201803 0.041259 201411 0.063555 202004 0.122788 

201910 0.025573248 11 201205 0.042086 41 201610 0.065073 71 201811 0.123801 101 

201312 0.026904025 12 202002 0.042303 42 201512 0.0665 72 201912 0.125559 102 

201707 0.027 13 201412 0.04325 43 201108 0.068053 73 201509 0.126057 103 

201710 0.028017621 14 201802 0.043695 44 201107 0.068228 74 201503 0.131403 104 

201202 0.029883041 201206 0.044681 201311 0.068804 201805 0.133134 

201705 0.030286344 16 201207 0.046297 46 202007 0.071168 76 201603 0.135947 106 

201309 0.030522088 17 201106 0.047851 47 201506 0.071892 77 201605 0.138004 107 

201703 0.030526316 18 201110 0.048044 48 201607 0.071934 78 201409 0.140439 108 

201402 0.030657895 19 201508 0.048177 49 201404 0.072151 79 201810 0.14192 109 

201704 0.030970149 201212 0.048967 201103 0.076561 201609 0.152262 

201611 0.031065574 21 201109 0.049126 51 201901 0.078592 81 201510 0.153573 111 

201307 0.031727941 22 201201 0.050666 52 201804 0.078641 82 201112 0.15409 112 

201209 0.03253125 23 201807 0.051582 53 201902 0.078885 83 201808 0.161614 113 

201904 0.033140097 24 201701 0.05188 54 201410 0.078945 84 201604 0.170786 114 

201211 0.033670382 201306 0.052279 201308 0.079122 201403 0.183289 

201906 0.033891129 26 201301 0.052592 56 201706 0.079974 86 201504 0.197605 116 

201305 0.034237968 27 201507 0.052668 57 201702 0.083821 87 201310 0.221826 117 

201111 0.034477612 28 201203 0.052795 58 201406 0.08676 88 201104 0.243184 118 

201408 0.034723127 29 202010 0.057407 59 201105 0.088364 89 201602 0.305682 119 

202001 0.0348659 201606 0.05787 201210 0.088421 202005 1.279365 

Table 3: Rankings of price deviations between QM and CL by spot month, 2011-2020 
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12.508 01Nov2017 1 172.646 01Aug2016 31 377.630 01Mar2015 61 590.605 01Aug2017 91 

28.579 01Mar2018 2 179.470 01Jan2020 32 379.997 01Nov2013 62 591.381 01Aug2019 92 

28.840 01Jan2017 3 183.730 01Jun2019 33 380.498 01Feb2018 63 615.785 01Nov2011 93 

28.921 01Jul2015 4 189.256 01Jan2021 34 381.421 01Jun2020 64 622.959 01Jun2016 94 

40.992 01May2019 197.074 01May2018 384.154 01Jun2011 637.372 01Oct2011 

43.081 01Nov2018 6 208.415 01Apr2018 36 384.777 01Jan2013 66 641.317 01Apr2013 96 

43.754 01Mar2017 7 211.438 01Jan2015 37 386.811 01Jun2017 67 643.520 01Jun2013 97 

47.132 01Dec2017 8 225.451 01May2013 38 394.665 01Nov2019 68 680.001 01Sep2017 98 

50.330 01Apr2014 9 226.852 01Jul2014 39 395.323 01Sep2014 69 735.782 01Nov2012 99 

54.705 01Dec2018 228.427 01Jan2016 395.740 01Sep2015 789.767 01Jan2019 

54.770 01Apr2019 11 238.781 01Sep2013 41 397.087 01Feb2014 71 807.589 01Dec2012 101 

58.531 01Jul2020 12 246.627 01Dec2014 42 407.042 01Jun2012 72 817.386 01Mar2020 102 

62.285 01Dec2016 13 257.851 01Sep2012 43 410.633 01May2017 73 853.050 01May2011 103 

62.877 01Oct2017 14 267.369 01Nov2016 44 411.158 01Jun2018 74 891.079 01Oct2012 104 

66.735 01Jan2018 271.006 01May2012 416.663 01Oct2019 897.381 01Apr2020 

69.471 01Jul2018 16 279.088 01Jun2014 46 453.136 01Jul2017 76 930.270 01Jul2011 106 

71.456 01Aug2015 17 284.251 01Oct2014 47 458.300 01Dec2019 77 971.113 01Sep2011 107 

86.049 01Sep2018 18 287.108 01May2016 48 464.249 01Sep2019 78 1004.031 01Jan2014 108 

99.495 01Oct2016 19 291.867 01Aug2020 49 469.752 01May2015 79 1051.812 01Mar2013 109 

106.985 01Apr2016 292.442 01Oct2018 473.743 01Oct2013 1113.703 01Feb2011 

115.031 01Aug2018 21 308.913 01Aug2014 51 492.017 01Mar2014 81 1187.400 01Jul2019 111 

117.600 01Nov2020 22 310.005 01Nov2014 52 502.374 01Dec2020 82 1187.642 01Mar2019 112 

123.234 01May2014 23 314.324 01Aug2013 53 508.351 01Aug2012 83 1220.312 01Sep2016 113 

138.381 01Jul2013 24 321.917 01Mar2016 54 518.571 01Jul2012 84 1260.841 01Apr2017 114 

139.273 01Dec2013 326.036 01Jan2012 528.349 01Feb2013 1322.684 01Dec2011 

139.287 01Jul2016 26 345.215 01Feb2016 56 537.369 01Feb2019 86 1435.453 01Mar2011 116 

156.544 01Dec2015 27 350.659 01Oct2015 57 562.531 01Apr2015 87 1570.360 01Apr2011 117 

159.544 01Sep2020 28 355.658 01Mar2012 58 570.103 01Apr2012 88 1575.776 01Oct2020 118 

160.354 01Nov2015 29 369.105 01Jun2015 59 578.202 01Feb2020 89 1618.960 01Aug2011 119 

166.662 01Feb2017 373.853 01Feb2012 589.393 01Feb2015 1798.357 01May2020 

Table 4: Rankings of Chi-square test statistic for frequency distribution of arbitrageurs by 

spot month, 2011-2020 
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9.196 01Nov2017 1 135.392 01Jan2020 31 286.378 01Nov2013 61 463.927 01Aug2019 91 

20.340 01Jul2015 2 139.500 01Jun2019 32 287.706 01Feb2018 62 464.146 01Nov2011 92 

20.834 01Mar2018 3 145.253 01Jan2021 33 289.987 01Jan2013 63 481.505 01Oct2011 93 

23.475 01Jan2017 4 148.836 01Jan2015 34 290.559 01Jun2011 64 483.023 01Jun2016 94 

31.274 01Nov2018 150.291 01May2018 292.138 01Nov2016 484.433 01Jun2013 95 

31.534 01May2019 6 161.263 01Apr2018 36 293.065 01Jun2017 66 485.702 01Apr2013 96 

31.563 01Mar2017 7 170.466 01May2013 37 295.061 01Sep2015 67 523.618 01Sep2017 97 

36.323 01Apr2014 8 170.703 01Jan2016 38 296.880 01Sep2014 68 555.927 01Nov2012 98 

39.976 01Dec2018 9 170.866 01Jul2014 39 300.675 01Feb2014 69 604.646 01Jan2019 99 

44.546 01Apr2019 179.426 01Sep2013 305.117 01Jun2012 609.533 01Dec2012 100 

46.028 01Dec2016 11 182.667 01Dec2014 41 307.685 01Nov2019 71 624.831 01Mar2020 101 

50.289 01Jan2018 12 191.441 01Sep2020 42 311.471 01Jun2018 72 644.286 01May2011 102 

53.368 01Aug2015 13 194.277 01Sep2012 43 317.836 01May2017 73 664.978 01Oct2012 103 

54.419 01Jul2018 14 203.246 01May2012 44 328.263 01Oct2019 74 704.027 01Jul2011 104 

55.407 01Oct2017 209.567 01Jun2014 345.533 01Oct2013 727.091 01Sep2011 105 

55.897 01Dec2017 16 210.048 01May2016 46 349.684 01Sep2019 76 753.798 01Apr2020 106 

65.108 01Sep2018 17 210.078 01Oct2014 47 351.922 01Jul2017 77 761.535 01Jan2014 107 

74.351 01Oct2016 18 218.873 01Oct2018 48 352.503 01May2015 78 764.652 01Feb2020 108 

75.406 01Apr2016 19 228.904 01Aug2020 49 361.550 01Mar2014 79 796.398 01Mar2013 109 

79.969 01Jul2020 230.802 01Nov2014 381.434 01Aug2012 844.815 01Feb2011 110 

84.980 01Aug2018 21 233.211 01Aug2014 51 390.296 01Jul2012 81 901.243 01Mar2019 111 

90.110 01May2014 22 234.213 01Aug2013 52 393.187 01Dec2020 82 904.048 01Jul2019 112 

90.347 01Nov2020 23 237.263 01Mar2016 53 399.847 01Feb2013 83 920.950 01Sep2016 113 

103.235 01Jul2016 24 244.287 01Jan2012 54 406.105 01Feb2019 84 960.464 01Apr2017 114 

103.859 01Jul2013 254.347 01Feb2016 409.596 01Apr2015 984.497 01Dec2011 115 

103.931 01Dec2013 26 259.976 01Oct2015 56 409.602 01Dec2019 86 1089.044 01Mar2011 116 

116.019 01Dec2015 27 266.815 01Mar2012 57 426.279 01Apr2012 87 1178.158 01Apr2011 117 

120.867 01Nov2015 28 274.933 01Jun2015 58 427.878 01Feb2015 88 1196.820 01Oct2020 118 

127.865 01Feb2017 29 276.851 01Mar2015 59 447.992 01Aug2017 89 1224.106 01Aug2011 119 

128.849 01Aug2016 281.668 01Feb2012 455.420 01Jun2020 

Table 5: Rankings of Chi-square test statistic for frequency distribution of arbitrageurs by 

spot month without May 2020, 2011-2020 
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Contract date VWASD Rank Contract date VWASD Rank contract date VWASD rank contract date VWASD rank 

201802 0.073 1 201307 0.170 31 201604 0.281 61 201108 0.447 91 

202008 0.078 2 201803 0.173 32 201209 0.285 62 201503 0.451 92 

201708 0.083 3 201601 0.179 33 201811 0.291 63 201403 0.453 93 

202012 0.087 4 201701 0.185 34 201402 0.293 64 201602 0.468 94 

201706 0.095 5 201608 0.187 35 201211 0.298 65 201312 0.475 95

201711 0.095 6 202007 0.189 36 201412 0.310 66 201210 0.477 96 

202001 0.097 7 201704 0.189 37 201805 0.313 67 201502 0.478 97 

202101 0.100 8 201709 0.190 38 201910 0.321 68 201410 0.484 98 

201801 0.102 9 201905 0.195 39 201901 0.328 69 201106 0.488 99 

201707 0.106 10 201908 0.198 40 201907 0.348 70 201308 0.490 100

202009 0.117 11 201609 0.198 41 201406 0.350 71 201309 0.493 101 

202002 0.118 12 201906 0.198 42 201310 0.353 72 201207 0.500 102 

201904 0.122 13 201809 0.203 43 201505 0.355 73 202006 0.509 103 

201612 0.125 14 201607 0.208 44 201401 0.355 74 201110 0.514 104 

202010 0.126 15 201506 0.209 45 201304 0.357 75 201102 0.527 105

201911 0.128 16 201611 0.212 46 201405 0.358 76 201409 0.553 106 

201705 0.129 17 201411 0.219 47 201202 0.368 77 201504 0.579 107 

201606 0.137 18 202003 0.221 48 201810 0.372 78 201206 0.584 108 

201703 0.141 19 201201 0.231 49 201512 0.373 79 201407 0.596 109 

201804 0.144 20 201305 0.240 50 201105 0.373 80 201107 0.661 110

201702 0.144 21 201306 0.242 51 201303 0.384 81 201408 0.678 111 

201610 0.155 22 201712 0.243 52 201111 0.387 82 201404 0.715 112 

201710 0.157 23 201603 0.249 53 201104 0.397 83 201311 0.754 113 

201909 0.158 24 201208 0.251 54 201501 0.400 84 201203 0.778 114 

201902 0.161 25 201605 0.252 55 201302 0.401 85 201109 0.823 115

201812 0.164 26 201212 0.260 56 201807 0.404 86 201205 0.823 116 

201508 0.166 27 201301 0.262 57 201806 0.417 87 201112 0.885 117 

201903 0.167 28 201511 0.269 58 201808 0.429 88 202004 0.949 118 

201912 0.169 29 201509 0.276 59 201204 0.431 89 201103 1.515 119 

202011 0.169 30 201507 0.279 60 201510 0.446 90 202005 5.346 120

Table 6: Rankings of volume weighted average spread deviation (VWASD) between CL and 

Brent prices by spot month, 2011-2020 
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01 jul2015 01jul2016 01jul2017 01 jul2018 
date1 

01jul2019 01 jul2020 01jul2015 01jul2016 01jul2017 01jul2018 
dale1 

01jul2019 01jul2020 

Contract date Weighted volatility Rank Contract date Weighted volatility Rank Contract date Weighted volatility Rank Contract date Weighted volatility Rank 

201802 7.25389E-06 1 201111 8.01E-05 31 201601 0.003195 61 201105 0.021341 91 

201611 7.50148E-06 2 201411 8.25E-05 32 201309 0.003454 62 201712 0.02167 92 

201709 9.32551E-06 3 202009 0.000112 33 201207 0.003512 63 201208 0.021711 93 

201702 9.43396E-06 4 201405 0.000123 34 201610 0.003546 64 201706 0.022826 94 

201701 1.02715E-05 5 201512 0.000135 35 201301 0.003725 65 201108 0.023353 95 

201710 1.04228E-05 6 201107 0.000168 36 201506 0.003901 66 201504 0.025388 96 

201705 1.13171E-05 7 201302 0.000183 37 201804 0.004378 67 201510 0.025919 97 

201609 1.26924E-05 8 201412 0.000205 38 201608 0.004934 68 201603 0.027261 98 

201607 1.6122E-05 9 201201 0.000332 39 201911 0.005195 69 201605 0.033797 99 

201703 1.62269E-05 10 201904 0.000494 40 201805 0.005436 70 202003 0.034788 100 

201312 1.91431E-05 11 202008 0.000551 41 201708 0.006327 71 202007 0.03499 101 

202011 1.95704E-05 12 201402 0.000578 42 201106 0.00652 72 201810 0.035672 102 

202012 2.24832E-05 13 201612 0.000823 43 201410 0.006679 73 201807 0.040835 103 

201303 2.45127E-05 14 201907 0.000866 44 201306 0.007092 74 201409 0.04246 104 

202001 2.75735E-05 15 201308 0.000888 45 201908 0.008113 75 202006 0.046626 105 

202002 3.04498E-05 16 201307 0.001182 46 201903 0.008909 76 201104 0.071033 106 

201212 3.24459E-05 17 201707 0.00131 47 201806 0.009388 77 201503 0.076135 107 

201204 3.53168E-05 18 201202 0.001393 48 201403 0.009787 78 201304 0.079731 108 

201110 3.59467E-05 19 201803 0.001405 49 201401 0.010521 79 201211 0.13362 109 

201406 3.66864E-05 20 201407 0.001451 50 201511 0.010704 80 201310 0.201667 110 

201209 3.84346E-05 21 201809 0.001454 51 201602 0.010957 81 201210 0.207983 111 

202010 4.26667E-05 22 201205 0.001584 52 201408 0.011594 82 201502 0.241732 112 

202101 4.53488E-05 23 201905 0.001803 53 201902 0.012628 83 201912 0.242358 113 

201808 4.56693E-05 24 201206 0.00188 54 201909 0.012825 84 201509 0.252519 114 

201910 4.91289E-05 25 201102 0.002251 55 201811 0.013262 85 201501 0.321911 115 

201606 6.0559E-05 26 201103 0.002257 56 201404 0.01536 86 201311 0.321919 116 

201109 6.32862E-05 27 201711 0.002315 57 201604 0.016411 87 201901 0.322894 117 

201801 6.38535E-05 28 201508 0.002338 58 201505 0.017816 88 201112 0.357859 118 

201906 7.08273E-05 29 201704 0.002621 59 201203 0.018133 89 202004 0.681548 119 

201812 7.65468E-05 30 201305 0.002631 60 201507 0.020957 90 202005 317.1896 120 

Table 7: Rankings of weighted volatility in CL contract by spot month, 2011-2020 

Figure 5: Time series of hourly volume-weighted average price differences between the cash-

settled and physically settled contracts in NYMEX NG (Natural Gas) (Left) and NYMEX 

CL (WTI crude oil) (Right) during the spot month, 2015-2020 
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